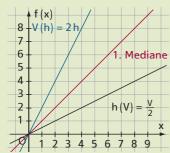
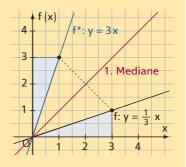
Umkehrfunktion einer linearen Funktion


Arbeitsblatt

OO Umkehrfunktion einer linearen Funktion

In einem quaderförmigen Gefäß mit der Grundfläche G = 2 dm² steht die Flüssigkeit bis zu einer Höhe h (in dm). Bei gegebener Grundfläche hängt das Flüssigkeitsvolumen V nur von der Höhe h

- Jeder Höhe h wird ein Volumen V(h) zugeordnet: $V(h) = G \cdot h = 2h$ Umgekehrt hängt die Höhe h vom Flüssigkeitsvolumen V ab.
- Jedem Volumen V wird eine Höhe h (V) zugeordnet: h (V) = $\frac{V}{G} = \frac{V}{2}$ Die Funktion h (V) = $\frac{V}{2}$ ist die Umkehrfunktion der Funktion



 $V(h) = 2 \cdot h$.

Der Graph der Funktion $V(h) = 2 \cdot h$ geht aus dem Graphen der Funktion $h(V) = \frac{V}{2}$ durch Spiegelung an der 1. Mediane f(x) = x

Satz

Sind zwei lineare Funktionen $f: A \rightarrow B$ und $g: B \rightarrow A$ Umkehrfunktionen voneinander, dann liegen ihre Graphen symmetrisch bezüglich der 1. Mediane.

Um die Umkehrfunktion f* einer Funktion punktweise zu zeichnen, übertrage die Funktionswerte f(x) = y in die Spalte der x-Werte und die ursprünglichen x-Werte in die Spalte der Funktionswerte der Umkehrfunktion $f^*(x) = y^*$.

Beispiel:

Stelle die lineare Funktion f: y = 2x - 1 und ihre Umkehrfunktion f*(x) grafisch dar.

Lösung:

Х	f(x) = y	х	$f^*(x) = y^*$
1	1	1	1
2	3	3	2
3	5	5	3
4	7	7	4
5	9	9	5
6	11	11	6
•••			
		٠	'

- Um die Umkehrfunktion f* einer Funktion rechnerisch zu finden, ersetze in der Funktionsgleichung x durch y* sowie y durch x und forme so um, dass y* explizit auf einer Seite steht. Dieses Verfahren kannst du auf alle Funktionen anwenden, die umkehrbar sind.
- Beispiel:

Eine Gerade g geht durch den Punkt P (2 | 3) und hat die Steigung $k = -\frac{3}{2}$. Sie wird an der 1. Mediane gespiegelt. Es sollen die Gleichungen der Geraden g und ihrer gespiegelten Geraden g* angegeben werden.

Lösuna:

Für die Gleichung von g wird in g: $y = k \cdot x + d$ der Punkt P sowie die Steigung k eingesetzt und d

$$g: y = k \cdot x + d$$

$$3 = -\frac{3}{2} \cdot 2 + d \implies 3 = -3 + d \implies d = 6 \implies g: y = -\frac{3}{2} \cdot x + 6$$

Um die gespiegelte Gerade g* zu erhalten, werden in der Gleichung der Geraden g die Variablen x durch y* sowie y durch x ersetzt und so umgeformt, dass y* explizit auf einer Seite steht.

$$g^*: x = -\frac{3}{2} \cdot y^* + 6 \qquad |-6$$

$$x - 6 = -\frac{3}{2} \cdot y^* \qquad |:\left(-\frac{3}{2}\right) \text{ bzw. } \cdot \left(-\frac{2}{3}\right)$$

$$\Rightarrow g^*: y^* = -\frac{2}{3} \cdot x + 4$$

Bestimme die Umkehrfunktion f* rechnerisch und grafisch.

a)
$$y = -2x + 3$$

b)
$$y = x$$

c)
$$f(x) = \frac{4}{9}x + 7$$

c)
$$f(x) = \frac{4}{9}x + 7$$
 d) $f(x) = \frac{4}{3}x - 2$

Bestimme die Umkehrfunktion f* rechnerisch und grafisch.

a)
$$f(x) = 11x - 4$$

b)
$$f(x) = \frac{3}{5}x + 9$$

c)
$$f(x) = 0.2x$$

d)
$$f(x) = \frac{x}{2} - 3$$

e)
$$f(x) = -3x + 3$$

f)
$$f(x) = -\frac{1}{4}x - 5$$

g)
$$f(x) = 1.6x$$

a)
$$f(x) = 11x - 4$$
 b) $f(x) = \frac{3}{5}x + 9$ c) $f(x) = 0.2x$ d) $f(x) = \frac{x}{2} - 3$ e) $f(x) = -3x + 3$ f) $f(x) = -\frac{1}{4}x - 5$ g) $f(x) = 1.6x$ h) $f(x) = 2.3x - 0.9$

3 Eine Gerade g durch den Punkt P und mit der Steigung k wird an der 1. Mediane gespiegelt. Gib die Gleichungen der Geraden g und ihrer gespiegelten Geraden g* an.

$$|a| P(3|-4), k=3$$

b)
$$P(1|1)$$
, $k = -2$

a)
$$P(3|-4)$$
, $k=3$ b) $P(1|1)$, $k=-2$ c) $P(0,5|-1)$, $k=-\frac{1}{3}$ d) $P(-2|1)$, $k=0,7$ e) $P(15|-20)$, $k=4,5$ f) $P(-5|0)$, $k=0$

d)
$$P(-2|1)$$
, $k = 0.7$

e)
$$P(15|-20)$$
, $k = 4.5$

f)
$$P(-5|0)$$
, $k=0$

Eine Gerade g durch A und B wird an der 1. Mediane gespiegelt. Gib die Gleichungen der Geraden g und ihrer gespiegelten Geraden g* an.

a)
$$A(-5|-2)$$
, $B(4|3)$

b)
$$A(-3|2)$$
, $B(4|-3)$

d)
$$A(-3,5|-1,2)$$
, $B(4,2|3,7)$