Kapitel 1: Potenzen und Wurzeln

Für eine Potenz mit der Basis $\mathrm{a} \in \mathbb{R}$ und dem Exponenten $\mathrm{n} \in \mathbb{N}$ gilt:
$a^{n}=\underbrace{a \cdot a \cdot \ldots \cdot a \cdot a} \quad$ Spezialfall: $\mathrm{a}^{1}=\mathrm{a}$

Für $a \neq 0: a^{0}=1 \cdot a^{0}=1$

```
Beispiel:
34}=3\cdot3\cdot3\cdot
x }\mp@subsup{}{}{3}=\textrm{x}\cdot\textrm{x}\cdot\textrm{x
70}=
```

Potenzen dürfen nur addiert bzw. subtrahiert werden, wenn sie sowohl gleiche Basen als auch gleiche Exponenten besitzen. In dem Fall addiert oder subtrahiert man koeffizientenweise.

```
Beispiel:
3a4}+4\mp@subsup{a}{}{4}-5\mp@subsup{a}{}{3}+8\mp@subsup{a}{}{3}=7\mp@subsup{a}{}{4}+3\mp@subsup{a}{}{3
6xy2}-1\mp@subsup{y}{}{2}+10x\mp@subsup{y}{}{2}+5\mp@subsup{y}{}{2}-3\mp@subsup{x}{}{2}=16x\mp@subsup{y}{}{2}+4\mp@subsup{y}{}{2}-3\mp@subsup{x}{}{2
```


Rechenregeln für Potenzen mit natürlichem Exponenten

Rechenregeln für Potenzen mit gleicher Basis

(1) Potenzen mit gleicher Basis werden multipliziert, indem man die Hochzahlen addiert:
$a^{m} \cdot a^{n}=a^{m+n}$ für $a \in \mathbb{R}$ und $m, n \in \mathbb{N}^{*}$
(2) Potenzen mit gleicher Basis werden dividiert, indem man die Hochzahlen subtrahiert:
$a^{m}: a^{n}=\frac{a^{m}}{a^{n}}=a^{m-n}$ für $a \in \mathbb{R}$ und $m, n \in \mathbb{N}^{*}$
(3) Potenzen werden potenziert, indem man die Hochzahlen multipliziert:
$\left(\mathrm{a}^{\mathrm{m}}\right)^{\mathrm{n}}=\mathrm{a}^{\mathrm{m} \cdot \mathrm{n}}$ für $\mathrm{a} \in \mathbb{R}$ und $\mathrm{m}, \mathrm{n} \in \mathbb{N}^{*}$

Beispiel:
$2^{3} \cdot 2^{4}=2^{6}$
$x^{5} \cdot x^{6}=x^{11}$

Beispiel:
$2^{7}: 2^{4}=\frac{2^{7}}{2^{4}}=2^{3}$
$a^{9}: a^{6}=\frac{a^{9}}{a^{6}}=a^{3}$

Beispiel:
$\left(2^{3}\right)^{5}=2^{15}$
$\left(x^{2}\right)^{8}=x^{16}$

Rechenregeln für Potenzen mit gleicher Hochzahl

(4) Potenzieren eines Produktes von Basen: $(a \cdot b)^{n}=a^{n} \cdot a^{n}$ für $a, b \in \mathbb{R}$ und $n \in \mathbb{N}^{*}$
(5) Potenzieren eines Quotienten von Basen: (a: b) ${ }^{n}=\left(\frac{a}{b}\right)^{n}=\frac{a^{n}}{b^{n}}$ für $a \in \mathbb{R}, b \in \mathbb{R} \backslash\{0\}$ und $n \in \mathbb{N}^{*}$

Beispiel:
$(3 \cdot 2)^{4}=3^{4} \cdot 2^{4}$
$(x \cdot y)^{3}=x^{3} \cdot y^{3}$

Beispiel:
$(3: 2)^{4}=\left(\frac{3}{2}\right)^{4}=\frac{3^{4}}{2^{4}}$
$(\mathrm{s}: \mathrm{r})^{5}=\left(\frac{\mathrm{s}}{\mathrm{r}}\right)^{5}=\frac{\mathrm{s}^{5}}{\mathrm{r}^{5}}$

Rechenregeln für Potenzen mit ganzzahligem Exponenten

Für $a \in \mathbb{R} \backslash\{0\}$ und $n \in \mathbb{N}$ gilt: $a^{-n}=\frac{1}{a^{n}}$

Beispiel:

$4^{-3}=\frac{1}{4^{3}}$

$$
\begin{equation*}
x^{-2}=\frac{1}{x^{2}} \tag{-5}
\end{equation*}
$$

Es gelten für $a, b \in \mathbb{R} \backslash\{0\}$ und $\mathrm{m}, \mathrm{n} \in \mathbb{N}$ folgende Rechenregeln:
(1) $a^{m} \cdot a^{n}=a^{m+n}$
Beispiel: $2^{-3} \cdot 2^{5}=2^{2} ; x^{-3} \cdot x^{6}=x^{3}$
(2) $a^{m}: a^{n}=\frac{a^{m}}{a^{n}}=a^{m-n}$
Beispiel: $2^{3}: 2^{7}=\frac{2^{3}}{2^{7}}=2^{-4}=\frac{1}{2^{4}} ; x^{-2}: x^{-7}=x^{5}$
(3) $\left(a^{m}\right)^{n}=a^{m \cdot n}$
Beispiel: $\left(2^{-3}\right)^{4}=2^{-12}=\frac{1}{2^{12}} ; \quad\left(x^{-4}\right)^{-5}=x^{20}$
(4) $(a \cdot b)^{n}=a^{n} \cdot a^{n}$
Beispiel: $(3 \cdot 4)^{-2}=3^{-2} \cdot 4^{-2}=\frac{1}{3^{2} \cdot 4^{2}} ;(x \cdot y)^{-4}=x^{-4} \cdot y^{-4}=\frac{1}{x^{4} \cdot y^{4}}$
(5) $(a: b)^{n}=\left(\frac{a}{b}\right)^{n}=\frac{a^{n}}{b^{n}}$
Beispiel: $(3: 2)^{-4}=\frac{3^{-4}}{2^{-4}}=\frac{2^{4}}{3^{4}} ;(x: y)^{-2}=\frac{x^{-2}}{y^{-2}}=\frac{y^{2}}{x^{2}}$

Rechenregeln für Potenzen mit nichtganzzahligem Exponenten und Wurzeln

Für $\mathrm{n} \in \mathbb{N} \backslash\{0 ; 1\}$ und $\mathrm{a}, \mathrm{b} \in \mathbb{R}_{0}^{+}$ist die n -te Wurzel von a jene Zahl b , deren n -te Potenz gleich a ist.
Man schreibt: $\sqrt[n]{a}=b \leftrightarrow b^{n}=a$
$\sqrt[\text { Wurzelexponent }]{\text { Radikant }}=$ Wurzelwert
Beispiel:
$\sqrt[5]{1024}=4 \Leftrightarrow 4^{5}=1024$
Es gelten für $n \in \mathbb{N}^{*}, m \in \mathbb{Z}$ und $a \in \mathbb{R}_{0}^{+}$folgende Rechenregeln für Wurzeln:
(1) $(\sqrt[n]{a})^{n}=a$
(2) $(\sqrt[n]{a})^{m}=\sqrt[n]{a^{m}}$
(3) $x \cdot \sqrt[n]{a^{m}} \mp y \cdot \sqrt[n]{a^{m}}=(x \mp y) \cdot \sqrt[n]{a^{m}}$
Beispiel:
Beispiel:
Beispiel:
$(\sqrt{9})^{2}=9$
$(\sqrt[4]{6})^{3}=\sqrt[4]{6^{3}}$
$12 \cdot \sqrt[3]{4^{2}}-8 \cdot \sqrt[3]{4^{2}}=4 \cdot \sqrt[3]{4^{2}}$
$(\sqrt[4]{\mathrm{x}})^{5}=\mathrm{x}$
$(\sqrt[5]{x})^{2}=\sqrt[5]{x^{2}}$
$4 \cdot \sqrt[5]{x^{3}}+6 \cdot \sqrt[5]{x^{3}}=10 \cdot \sqrt[5]{x^{3}}$

Es gelten für $\mathrm{m}, \mathrm{n} \in \mathbb{N}^{*}$ und $\mathrm{a} \in \mathbb{R}_{0}^{+}$folgende Rechenregeln für Wurzeln:
(4) $\sqrt[n]{a} \cdot \sqrt[m]{a}=\sqrt[n \cdot m]{a^{n+m}}$
(5) $\sqrt[\frac{n}{a}]{\sqrt[m]{a}}=\sqrt[n \cdot m]{a^{n-m}}$
(6) $\sqrt[n]{\sqrt[m]{a}}=\sqrt[m]{\sqrt[n]{a}}=\sqrt[m \cdot n]{a}$

Beispiel:
Beispiel:
$\frac{\sqrt[3]{2}}{\sqrt[5]{2}}=\sqrt[15]{2^{2}} \quad \sqrt[3]{\sqrt[4]{21}}=\sqrt[4]{\sqrt[3]{21}}=\sqrt[12]{21}$
$\sqrt[3]{2} \cdot \sqrt[4]{2}=\sqrt[12]{2^{7}}$
$\sqrt[5]{x} \cdot \sqrt[3]{x}=\sqrt[15]{x^{8}}$

$$
\frac{\sqrt[3]{x}}{\sqrt[9]{x}}=\sqrt[27]{x^{6}}
$$

$$
\sqrt[5]{\sqrt[6]{x}}=\sqrt[6]{\sqrt[5]{x}}=\sqrt[30]{x}
$$

Es gelten für $\mathrm{n} \in \mathbb{N}^{*}$, und $a \in \mathbb{R}^{+}$folgende Rechenregeln für Wurzeln:
(7) $\sqrt[n]{a \cdot b}=\sqrt[n]{a} \cdot \sqrt[n]{b}$
(8) $\sqrt[n]{\frac{a}{b}}=\frac{\sqrt[n]{a}}{\sqrt[n]{b}}$

Beispiel:
Beispiel:
$\sqrt[4]{3 \cdot 4}=\sqrt[4]{3} \cdot \sqrt[4]{4}$
$\sqrt[5]{\frac{6}{18}}=\frac{\sqrt[5]{6}}{\sqrt[5]{18}}$
$\sqrt[5]{x \cdot y}=\sqrt[5]{x} \cdot \sqrt[5]{y}$
$\sqrt[9]{\frac{x}{y}}=\frac{\sqrt[9]{x}}{\sqrt[9]{y}}$

Rechenregeln für Potenzen mit rationalem Exponenten und Wurzeln

```
Für alle a\in\mathbb{R}
```

```
Beispiel:
94}=\sqrt{5}{\mp@subsup{9}{}{4}
x
y2}=\sqrt{}{\mp@subsup{y}{}{5}
```

Es gelten für $\mathrm{a}, \mathrm{b} \in \mathbb{R}^{+}$und $\mathrm{m}, \mathrm{n} \in \mathbb{Q}$ folgende Rechenregeln:
(9) $a^{m} \cdot a^{n}=a^{m+n}$
(10) $a^{m}: a^{n}=\frac{a^{m}}{a^{n}}=a^{m-n}$
(11) $\quad\left(\mathrm{a}^{\mathrm{m}}\right)^{\mathrm{n}}=\mathrm{a}^{\mathrm{m} \cdot \mathrm{n}}$
(12) $\quad(a \cdot b)^{n}=a^{n} \cdot a^{n}$
(13) $\quad(a: b)^{n}=\left(\frac{a}{b}\right)^{n}=\frac{a^{n}}{b^{n}}$

Beispiel: $2^{\frac{3}{2}} \cdot 2^{\frac{1}{2}}=2^{2}$ $x^{\frac{1}{4}} \cdot x^{2}=x^{\frac{9}{4}}$

Beispiel: $9^{4}: 9^{\frac{7}{2}}=\frac{9^{4}}{9^{\frac{1}{2}}}=9^{\frac{1}{2}}=\sqrt{9}=3$ $x^{2}: x^{3}=\frac{x^{2}}{x^{3}}=x^{-1}=\frac{1}{x}$
Beispiel: $\left(5^{2}\right)^{\frac{3}{4}}=5^{\frac{6}{4}}=5^{\frac{3}{2}}$
$\left(y^{\frac{2}{3}}\right)^{6}=y^{4}$
Beispiel: $(5 \cdot 6)^{\frac{3}{2}}=5^{\frac{3}{2}} \cdot 6^{\frac{3}{2}}$ $(r \cdot s)^{\frac{4}{5}}=r^{\frac{4}{5}} \cdot s^{\frac{4}{5}}$
Beispiel: $(2: 3)^{\frac{1}{4}}=\left(\frac{2}{3}\right)^{\frac{1}{4}}=\frac{\frac{2}{4}}{\frac{1}{4}}=\frac{\sqrt[4]{2}}{\sqrt[4]{3}}$
$(y: z)^{\frac{2}{5}}=\left(\frac{y}{z}\right)^{\frac{2}{5}}=\frac{\frac{2}{5}}{7^{\frac{2}{5}}}$

Rechenregeln für Potenzen mit reellem Exponenten

Es gelten für $\mathrm{a}, \mathrm{b} \in \mathbb{R}^{+}$und für $\mathrm{a}, \mathrm{b} \in \mathbb{R}$ die Rechenregeln wie beim Rechnen mit Potenzen mit rationalem Exponenten.

