Dichte und Masse Lösungen

1. a) Ein Körper wiegt $6,6 \mathrm{~g}$ und hat ein Volumen von $1 \mathrm{~cm}^{3}$. Man sagt, seine Dichte ist $\rho=\mathbf{6 , 6} \mathrm{g} / \mathrm{cm}^{3}$.
b) Ein Körper hat eine Masse von $10,7 \mathrm{~g}$. Sein Volumen beträgt $1 \mathrm{~cm}^{3}$. Dieser Körper hat eine Dichte von $\rho=10,7 \mathrm{~g} / \mathrm{cm}^{3}$.
c) Kupfer hat eine Dichte von $8,9 \mathrm{~g} / \mathrm{cm}^{3}$. Ein Körper, der ein Volumen von $10 \mathrm{~cm}^{3}$ hat und aus Kupfer besteht, wiegt daher 89 g .
2. a)

Volumen	Masse
$2 \mathrm{dm}^{3}$	$16,4 \mathrm{~g}$
$1 \mathrm{dm}^{3}$	$8,2 \mathrm{~g}$

$\rho=8,2 \mathrm{~g} / \mathrm{dm}^{3}$
3. a)

Volumen	Masse
$1 \mathrm{dm}^{3}$	2 kg
$3 \mathrm{dm}^{3}$	6 kg

$m=6 \mathrm{~kg}$
4. a)

Masse	Volumen
$2,65 \mathrm{~g}$	$1 \mathrm{dm}^{3}$
1 g	$\frac{1}{2,65} \mathrm{dm}^{3}$
300 g	$300 \cdot \frac{1}{2,65} \mathrm{dm}^{3}$

$V \approx 113 \mathrm{dm}^{3}$
b)

Volumen	Masse
$5 \mathrm{~cm}^{3}$	55 g
$1 \mathrm{~cm}^{3}$	11 g

$\rho=11 \mathrm{~g} / \mathrm{cm}^{3}$
b)

Volumen	Masse
$1 \mathrm{~cm}^{3}$	$7,8 \mathrm{~g}$
$10 \mathrm{~cm}^{3}$	78 g

$\mathrm{m}=78 \mathrm{~g}$
b)

Masse	Volumen
$2,7 \mathrm{~kg}$	$1 \mathrm{dm}^{3}$
27 kg	$10 \mathrm{dm}^{3}$
54 kg	$20 \mathrm{dm}^{3}$

$\mathrm{V}=20 \mathrm{dm}^{3}$
c)

Volumen	Masse
$4 \mathrm{~m}^{3}$	1920 kg
$1 \mathrm{~m}^{3}$	480 kg

$\rho=480 \mathrm{~kg} / \mathrm{m}^{3}$
c)

Volumen	Masse
$1 \mathrm{dm}^{3}$	$19,3 \mathrm{~kg}$
$2 \mathrm{dm}^{3}$	$38,6 \mathrm{~kg}$

$m=38,6 \mathrm{~kg}$
c)

Masse	Volumen
$1,4 \mathrm{~g}$	$1 \mathrm{~cm}^{3}$
1 g	$\frac{1}{1,4} \mathrm{~cm}^{3}$
5 g	$5 \cdot \frac{1}{1,4} \mathrm{~cm}^{3}$

$V \approx 3,6 \mathrm{~cm}^{3}$

