Rechnen mit Potenzen

1.	Bei einer Potenz	können alle	rationalen	7ahlen als F	Rasis auftreten	Berechne den	Wert der Potenz

a)
$$(-1)^2 =$$
 $(-1)^3 =$ $(-1)^4 =$ $(+1)^5 =$ $(-1)^4 =$

$$(-1)^3 =$$

$$(-1)^4 =$$

$$(+1)^5 =$$

$$(-1)^{17} =$$

b)
$$(-3)^2 =$$
 $(+3)^4 =$ ____

$$(+3)^4 =$$

$$(-3)^3 =$$

$$(+3)^3 =$$

$$(-2)^2 =$$

$$(-2)^4 =$$

$$(-2)^5 =$$

$$(+2)^6 =$$

Der Wert einer Potenz mit negativer Basis ist bei einer geraden Anzahl von Faktoren

_____ und bei einer _____ Anzahl von Faktoren negativ.

b) Gib an, ob das Ergebnis positiv (pos) oder negativ (neg) ist.

$$(-1)^{97}$$

$$(-23)^3$$

$$(-1)^{64}$$
 ____ $(-23)^3$ ____ $(-23)^2$ ____

$$-23^{2}$$

$$-(+1)^{13}$$
_____ $-(-14)^{14}$ _____ -5^3 ____ $-(-100)^9$ ____

$$-(-14)^{14}$$

$$-5^{3}$$

c) Ergänze einen Exponenten und/oder eine Basis so, dass der Wert der Potenz positiv ist.

d) Ergänze einen Exponenten und/oder eine Basis so, dass der Wert der Potenz negativ ist.

$$(-2)^{\Box}$$
 $(-15)^{\Box}$ $(_{__})^3$ $(_{__})^5$ $(_{__})^{\Box}$

3. Kreuze an, ob die folgenden Aussagen richtig oder falsch sind.

	Aussage	richtig	falsch
a)	$(-5)^8 = (+5)^8$		
b)	$-7^2 = (-7)^2$		
c)	$(-4)^3 = -4^3$		
d)	$2^5 = -(-2)^5$		

4. Vereinfache.

a)
$$a^3 \cdot a^5 =$$

b)
$$b^3 \cdot b^7 =$$

c)
$$-2c \cdot 6c^4 =$$

d)
$$x \cdot x^6 =$$

e)
$$d^4 \cdot (3d)^2 =$$

f)
$$-y^3 \cdot (0,5y)^2 =$$

g)
$$x^3 \cdot x^8 \cdot (3x)^2 =$$

h)
$$4y^3 \cdot (2y)^2 =$$

5. Potenziere.

a)
$$(a^2)^3 =$$

b)
$$(x^3)^3 =$$

c)
$$(5a^2)^2 =$$

d)
$$(3xy^4)^2 =$$

e)
$$(2b^2c^3)^4 =$$

f)
$$(4a^3b^4)^2 =$$