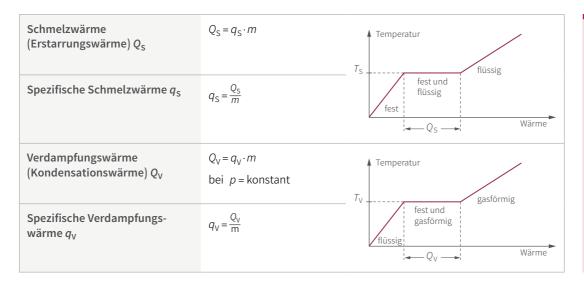
126 Wellen MECHANIK

Schallwellen

Schallpegel $oldsymbol{eta}$	I: Schallintensität $I_0 = 10^{-12} \frac{\text{W}}{\text{m}^2}$ standardisierter Referenzwert	Einheit: 1 dB (1 Dezibel) für die Schallintensität (entspricht etwa der
Schallpegel in dB	unteren Wahrnehmungsgrenz Hörgrenze: 0 Blätterrauschen: 10 Gespräch: 60 Rock-Konzert: 110 Schmerzgrenze: 120 Düsentriebwerk: 130	e)
Schalldruckpegel L _p	$L_{p} = (10 \mathrm{dB}) \cdot \log \left \frac{p^{2}}{p_{0}^{2}} \right $ $= (20 \mathrm{dB}) \cdot \log \left \frac{p}{p_{0}} \right $	p: Schalldruck p ₀ = 2 · 10 ⁻⁵ Pa Bezugsschalldruck bei der Hörgrenze

Dopplereffekt für Schallwellen


Allgemeiner Dopplereffekt	$f_{\rm E} = f \cdot \frac{c \pm v_{\rm E}}{c \pm v_{\rm S}}$		
Allgemeine Vorzeichen- regel	 f_E: Frequenz, die der Empfänger registriert f: Frequenz, die der Sender abstrahlt c: Schallgeschwindigkeit in Luft v_E: Geschwindigkeit des Empfängers relativ zur Luft v_S: Geschwindigkeit des Senders relativ zur Luft Abstand Sender – Empfänger wird kleiner – es gilt das Vorzeichen, durch das die Frequenz größer wird wird größer – es gilt das Vorzeichen, durch das die Frequenz kleiner wird 		
Ruhender Sender, bewegter Empfänger	$f_{\rm E} = f \cdot \frac{c \pm v_{\rm E}}{c} = f \cdot \left(1 \pm \frac{v_{\rm E}}{c}\right)$ Das Pluszeichen gilt beim Annähern, das Minuszeichen beim Entfernen des Empfängers vom Sender.		
Ruhender Empfänger, bewegter Sender	$f_{\rm E} = f \cdot \frac{c}{c \mp v_{\rm S}} = f \cdot \frac{1}{1 \mp \frac{v_{\rm S}}{c}}$ Das Minuszeichen gilt beim Annähern, das Pluszeichen beim Entfernen des Empfängers vom Sender.		
Wellenfeld eines bewegten Senders	$\lambda_{\rm E} = \frac{c \mp v_{\rm S}}{f}$ M_1, M_2, \dots sind Mittelpunkte der ausgesandten Wellen.		

Wärme und Temperatur

Zusammenhang zwischen Temperaturskalen	$T = \vartheta + 273,15$ $\vartheta = T - 273,15$	
	-273,15°C 	

Zeichen und Erklärungen

Wärme Q Grundgleichung der Wärmelehre	$Q = m \cdot c \cdot \Delta T$	ohne Aggregatzustandsänderung
Spezifische Wärmekapazität c $c = \frac{Q}{m \cdot \Delta T}$		

Aggregatzustandsänderungen

Wärmeleitung	$Q = \frac{\lambda \cdot t \cdot \Delta T}{l}$ Energietransport durch Wechselwirkungen zwischen Atomen und Molekülen, die dabei nicht selbst transportiert werden.	Wärme- leitung Konvektion	
Wärmeströmung (Konvektion)	Wärmeübertragung ist mit Stofftransport verbunden.	Wärme- strahlung	
Wärmestrahlung	Wärme wird durch elektromag- netische Wellen transportiert, die sich mit Lichtgeschwindigkeit ausbreiten. Das gilt auch für das Vakuum.	-	

Wärmeübergang